
GridVeda: An AI-Driven Grid Intelligence System for Real-Time

Transformer Health Monitoring

Ishaan Busireddy1†, Neil Chandran1†, Rehaan Kadhar1†, Shreyan Paliwal1†
1TreeHacks 2026, Stanford University, Stanford, 94305, CA, USA.

† These authors contributed equally to this work.

Abstract

Power grid reliability in the United States has deteriorated over the past two decades,
with outage frequency increasing amid rising weather volatility, infrastructure aging, and
renewable integration complexity. According to data from the North American Electric
Reliability Corporation (NERC) and analysis by the Bank of America Institute, transmission
outages per year are significantly higher today than in the early 2000s. Since 2000, the
number of major weather-related outages has increased dramatically, with extreme weather
now responsible for over 80% of large-scale blackouts in the U.S.

We present GridVeda, an AI-powered early warning system for electrical transform-
ers that runs on-site at substations, predicting failures before blackouts occur. GridVeda
integrates dual AI pipelines: a physics-informed ETT (Electric Transformer Temperature)
anomaly detector using gradient boosting ensembles, and a quantum-classical hybrid DGA
(Dissolved Gas Analysis) fault classifier combining a 6-qubit variational quantum circuit
with Rogers Ratio and Duval Triangle diagnostics. The system achieves 98.09% ± 0.80%
DGA classification accuracy with 96.99% macro F1 score across 5-fold cross-validation. This
paper provides an extensive technical overview of GridVeda’s multi-layered architecture, in-
cluding transformer telemetry processing, quantum ensemble voting mechanisms deployed
on NVIDIA hardware with cuQuantum acceleration, Nemotron Nano 4B for screen-aware
conversational assistance, Perplexity Sonar for web-grounded spatial fault visualization via
Three.js CAD rendering, and GPT-4 as responsible AI orchestrator managing operator
training and ethical deployment safeguards.

Keywords: Power Grid Reliability, Transformer Monitoring, AI for Infrastructure, Real-
Time Telemetry, Energy Systems Intelligence, Quantum Computing, Variational Quantum Cir-
cuits, Gradient Boosting Ensembles, Vision-Language Models, Spatial Visualization, Responsi-
ble AI, Edge AI

1 Introduction

Grid operators work in high-stakes environments where failures cascade fast and decisions must
be made under severe time pressure. Today, 46% of U.S. distribution infrastructure is at or
beyond its useful life, contributing to an annual economic loss of $150 billion [6]. The DOE
warns that without intervention, the risk of major outages could increase 30-fold by 2030. When
a single transformer fails under these conditions—often due to the overloading seen in 34% of
recent asset failures—it can knock out substations and leave communities dark for days. A
single transformer failure can overload neighboring assets, trigger cascading outages, and leave
entire communities without power for extended periods. Recent events, from the 2021 Texas
grid crisis to the 2023 North Carolina substation attacks and extreme weather-driven outages,
reveal a common reality: we are still reacting to failures instead of predicting them.
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Growing up across California, Oregon, and Maryland, our team has witnessed firsthand how
fragile infrastructure can amplify disaster impacts, from wildfire-driven outages in the West to
storm-related grid disruptions on the East Coast. These experiences reinforced the need for
on-device intelligence that continues operating even when connectivity is unreliable, especially
during storms, heat waves, or grid stress events when traditional cloud-dependent systems
become unavailable.

1.1 System Overview

GridVeda is an AI-powered early warning system for electrical transformers designed to predict
failures before blackouts occur by providing real-time situational awareness and automated
decision support for grid operators. The system operates entirely at the edge without cloud
dependency for core detection and classification tasks, ensuring continued operation during
storms, outages, or network instability when connectivity fails.

The architecture integrates five major AI components working in concert. First, a physics-
informed ETT (Electric Transformer Temperature) anomaly detector processes continuous sen-
sor readings every 15 minutes, computing 36 derived features from thermal dynamics, electrical
loading, thermodynamic coupling, and insulation degradation patterns. This detector employs
a weighted ensemble of XGBoost, LightGBM, CatBoost, and Random Forest classifiers to gen-
erate continuous risk scores scaled from 0 to 100%, alerting operators when scores exceed 50%
to schedule gas testing.

Second, when gas chromatography results become available, a quantum-classical hybrid DGA
(Dissolved Gas Analysis) fault classifier diagnoses transformer faults across eight categories.
This system combines a 6-qubit variational quantum circuit accelerated via NVIDIA cuQuantum
with classical Rogers Ratio analysis and Duval Triangle geometric classification. The three
methods perform plurality voting to produce final diagnoses, with a parallel classical gradient
boosting ensemble providing weighted meta-voting where the classical ensemble contributes two
votes and the quantum ensemble contributes one vote.

Third, NVIDIA’s Nemotron Nano 4B operates as a screen-aware conversational assistant,
monitoring dashboard state through periodic screenshots and OCR extraction. The model
responds to natural language queries about transformer health, explains risk scores by syn-
thesizing explainability panel data, and provides adaptive tutorials for operators with varying
levels of expertise. Voice interaction via Web Speech API enables hands-free field operation.

Fourth, Perplexity Sonar provides web-grounded spatial intelligence, automatically research-
ing transformer failures with similar DGA signatures and rendering interactive 3D fault visu-
alizations. The system retrieves NERC reports, manufacturer recalls, and regional failure data
at approximately 1,200 tokens per second, then maps probable fault locations within Three.js
CAD models using gas diffusion physics and Bayesian priors from historical incident frequencies.

Fifth, GPT-4 serves as a responsible AI orchestrator, managing operator onboarding through
adaptive tutorials, providing layered model explanations from conceptual analogies to mathe-
matical derivations, monitoring prediction distributions for bias, and enforcing human-in-the-
loop policies for critical actions. The orchestrator implements A/B testing for model updates
and generates automated incident post-mortems.

All components run on NVIDIA hardware, with development on RTX 5090 and deploy-
ment targeting the Jetson Orin Nano Super for 25-watt field operation. The FastAPI backend
streams telemetry at 2-second intervals via WebSocket to a real-time dashboard displaying live
transformer health cards, risk gauges, explainability panels, and spatial visualizations.
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1.2 Research Contributions

Existing research and commercial solutions have shown the benefits of SCADA systems for
grid monitoring [1, 2], as well as the potential of machine learning for outage prediction [3,
4]. However, integrating these components into a single real-time intelligence system—with
robust AI models, contextual awareness, and operator-friendly interfaces—remains challenging.
GridVeda addresses this gap by combining state-of-the-art gradient boosting techniques for
anomaly detection, quantum variational circuits operating in ensemble with classical DGA
diagnostic methods, and agentic AI layers to interpret grid conditions and provide predictive
guidance.

In this paper, we provide:

1. A comprehensive analysis of rising grid instability using empirical data from NERC and
Climate Central, demonstrating structural regime changes in grid reliability.

2. A deep technical overview of GridVeda’s dual-pipeline architecture, processing Electric
Transformer Temperature (ETT) sensor data every 15 minutes and Dissolved Gas Analysis
(DGA) chemistry measurements on-demand.

3. Details on AI model ensemble design deployed on NVIDIA hardware, covering a 6-qubit
variational quantum circuit accelerated with cuQuantum operating in tri-method ensemble with
Rogers Ratio and Duval Triangle diagnostics, physics-informed gradient boosting for anomaly
detection, Nemotron Nano 4B for screen context monitoring and conversational assistance,
Perplexity Sonar for web-grounded spatial fault visualization via Three.js CAD rendering, and
GPT-4 as responsible AI orchestrator managing operator onboarding, model interpretability,
and ethical deployment safeguards.

4. Real-world performance benchmarks demonstrating 98.09% DGA classification accuracy,
sub-second anomaly detection, and operator response time improvements.

5. The complete system architecture with model integration patterns, ensemble voting mech-
anisms, conversational AI interfaces, real-time dashboard monitoring, and spatial fault visual-
ization capabilities.

2 Rising Grid Instability

The reliability of the United States power grid has become an increasingly urgent concern.
Modern power systems face unprecedented challenges from multiple converging factors: aging
infrastructure originally designed for centralized generation, increasing demand volatility driven
by electrification of transportation and heating, intermittency from renewable energy sources,
and intensifying extreme weather events driven by climate change.

2.1 Transmission Outage Trends

As illustrated in data from the Bank of America Institute [5], annual transmission outages
have risen markedly compared to levels observed in the early 2000s. From 2008–2014, outage
levels remained relatively stable, fluctuating between roughly 4,000 and 5,000 events annually.
However, beginning in 2015, outage frequency nearly doubled, with sustained levels between
8,000 and 10,000 outages per year through 2024.
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Figure 1: Transmission outages per year (2008–2024). Source: NERC; Bank of America Insti-
tute.

Figure 1 shows a clear structural break beginning in 2015. Outages rise from approximately
4,000–5,000 annually to sustained levels above 8,000. This shift is not a short-term anomaly
but a persistent regime change that continues through 2024. Such elevated outage frequency
increases operational uncertainty, complicates maintenance planning, and heightens systemic
fragility. The economic impact is substantial, with each major transmission outage costing
utilities and customers millions of dollars [6].

2.2 Weather-Driven Major Outages

Climate Central’s longitudinal dataset on major U.S. power outages reinforces the trend of
accelerating grid instability [7]. Weather-related major outages have grown dramatically since
2000, with particularly pronounced peaks after 2015. Since 2000, the number of major weather-
related outages has increased dramatically, with extreme weather now responsible for over 80%
of large-scale blackouts in the U.S.
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Figure 2: Weather-related major U.S. power outages (2000–2023). Source: Climate Central;
DOE OE-417.

Figure 2 illustrates the rapid growth in weather-related major outages since 2000. Recent
events, from the 2021 Texas grid crisis to the 2023 North Carolina substation attacks and
extreme weather-driven outages, reveal a common reality: we are still reacting to failures instead
of predicting them. This data suggests that climate volatility is no longer a tail risk but a
central operational variable [8]. Grid management must transition from reactive restoration to
predictive resilience. Growing up across California, Oregon, and Maryland, our team witnessed
how fragile infrastructure amplifies disaster impacts, reinforcing the need for edge intelligence
that operates during connectivity disruptions.

3 System Architecture: GridVeda

GridVeda implements a dual-pipeline architecture for comprehensive transformer health mon-
itoring, processing two distinct data streams through separate AI models before combining
results into unified risk assessments.

3.1 Dual-Pipeline Architecture Overview

The GridVeda system implements two primary AI pipelines operating on different time scales
and data modalities. The ETT Anomaly Detector processes continuous time-series telemetry
from transformer sensors sampled at 15-minute intervals. This pipeline monitors operational
patterns around the clock, computing physics-informed features that capture thermal dynamics,
electrical loading, thermodynamic coupling, and insulation degradation. The detector flags
high-risk conditions (risk score >50%) that warrant further investigation through dissolved gas
analysis.

The Quantum Ensemble DGA Fault Classifier activates when operators perform gas
chromatography tests, typically triggered by ETT anomaly alerts or scheduled maintenance
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intervals. This pipeline processes chemical measurements of dissolved gases in transformer
oil—hydrogen (H2), methane (CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2), carbon
monoxide (CO), and carbon dioxide (CO2). The quantum ensemble combines three diagnos-
tic methodologies: a 6-qubit variational quantum circuit accelerated via cuQuantum, classical
Rogers Ratio analysis implementing IEEE C57.104 standard thresholds, and Duval Triangle
geometric classification. These three methods vote on fault classification across eight categories
spanning normal operation, partial discharge, low and high energy electrical discharge, and
three thermal fault severity ranges.

The dual-pipeline workflow operates as follows: Continuous ETT monitoring processes sensor
readings every 15 minutes, computing 36 physics-informed features and generating anomaly
probabilities via a weighted ensemble of XGBoost, LightGBM, CatBoost, and Random Forest
classifiers. When the ensemble risk score exceeds 50%, the system alerts operators to schedule
DGA testing. Upon receiving gas chromatography results, the quantum ensemble processes
normalized concentration values through all three diagnostic methods simultaneously. The
quantum circuit encodes gas measurements into qubit rotations, evolves the state through four
variational layers with learned parameters, and produces measurement probabilities that map
to fault classes. In parallel, Rogers Ratio analysis computes five diagnostic ratios and applies
threshold rules to classify the fault, while Duval Triangle projects the three key hydrocarbons
into normalized percentage coordinates and determines which diagnostic region contains the
sample. The three classifications enter a plurality voting mechanism where the majority verdict
becomes the final diagnosis, with ties broken by quantum prediction due to its learned nonlinear
decision boundaries.

Additionally, a second classical gradient boosting ensemble for DGA operates in parallel
with the quantum circuit, providing weighted meta-voting where the classical DGA ensemble
contributes two votes and the quantum ensemble contributes one vote, reflecting the classical
models’ higher sample efficiency during training.

3.2 Real-Time Operational Dashboard Architecture

GridVeda’s operational interface implements a multi-panel monitoring dashboard connected to
the FastAPI backend via WebSocket streaming at 2-second intervals. The Live Fleet Sta-
tus panel displays transformer health cards with color-coded risk gauges (green <40%, yellow
40-70%, red >70%), current oil temperature and load readings, and 24-hour risk sparklines.
The KPI Analytics panel aggregates fleet-wide metrics: average risk score with trend in-
dicators, active anomaly count, time-to-detection, false positive rate (2.1/day baseline), and
model confidence. Operators select time windows (hour/day/week/month) to identify seasonal
patterns.

The AI Chat Interface routes queries based on content: grid-specific technical questions go
to Nemotron Nano 4B running locally via Ollama, while external information requests (weather,
recalls, incidents) route to Perplexity Sonar with real-time citations. The Spatial Fault Visu-
alization panel renders interactive 3D transformer CAD models via Three.js with fault proba-
bility heat maps overlaid. The Neural Network Explainability panel displays SHAP feature
importance rankings for ETT predictions, tri-method ensemble votes for DGA classifications,
Rogers Ratio values, and Duval Triangle coordinates with visual plots. The GPU Resource
Monitor tracks temperature, memory, utilization, and power draw via nvidia-smi polling every
second.

WebSocket connections via Socket.IO maintain bidirectional communication with automatic
reconnection during network disruptions. When connectivity drops, the dashboard caches
telemetry and displays locally computed predictions in offline mode. Visual design follows
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accessibility guidelines with high-contrast colors, large touch targets, and keyboard shortcuts.
Alerts trigger visual indicators (flashing red borders) and optional audio notifications requiring
explicit operator acknowledgment with logged audit trails.

3.3 Nemotron Nano 4B Screen Context Monitor

GridVeda deploys NVIDIA’s Nemotron Nano 4B as a screen-aware conversational assistant
that monitors dashboard state and responds to operator queries. At 5-second intervals, the
system captures dashboard screenshots via HTML5 Canvas API, applies OCR via Tesseract to
extract visible text (transformer IDs, risk scores, alerts), and detects UI component boundaries
through computer vision. The extracted data forms a structured JSON representation of current
dashboard state.

Nemotron receives multi-modal input combining the visual screenshot and parsed semantic
annotations. The model was system-prompted with IEEE C57.104 standards, Rogers Ratio
and Duval Triangle methodologies, physics-informed feature definitions, and GridVeda’s dual-
pipeline architecture. This enables several capabilities: proactive alerting when multiple trans-
formers simultaneously elevate risk scores (suggesting systemic voltage events), conversational
queries where operators ask ”Why is T047 high risk?” and receive explanations synthesized from
explainability panel data, tutorial support for new operators with adaptive depth based on back-
ground, workflow guidance through multi-step procedures, and model explanation translating
SHAP values to plain language.

The implementation achieves low latency through efficient serving. Nemotron Nano 4B (4B
parameters quantized to INT8) fits entirely in RTX 5090’s 24GB VRAM. Ollama framework
applies continuous batching for GPU utilization. Response latency averages 200-400ms first
token, streaming at 40-60 tokens/sec. System prompt consumes approximately 2,000 tokens,
dashboard context adds 1,500-3,000 tokens, user queries 10-50 tokens, totaling under 6,000
tokens within the 4,096 token window. Voice interaction via Web Speech API enables hands-
free field operation with speech-to-text input and browser-native text-to-speech output.

3.4 Perplexity Sonar Web-Grounded Spatial Intelligence

GridVeda integrates Perplexity’s Sonar model for real-time web research, enabling contextu-
alization of local transformer health with external data sources including equipment failures,
manufacturer recalls, weather events, and academic research. Integration activates through op-
erator queries (”recent transformer failures Texas 2024-2025”) or automatic contextual lookup
triggered by fault detections.

When the quantum ensemble classifies a DGA sample as faulty, the system constructs a re-
search query embedding the fault signature. For D2 high-energy discharge, Perplexity searches
for ”transformer high-energy discharge failures [C2H2 elevated, C2H2/C2H4 > 1.0] past 12
months” with geographic context at approximately 1,200 tokens/second. Retrieved incidents
are parsed to extract commonalities—bushing failures, lightning strikes, internal arcing, manu-
facturing defects. The chat panel displays synthesized findings: ”Research shows 7 failures with
similar DGA signatures. Four attributed to bushing flashover during storms, two to winding
insulation moisture ingress, one to manufacturing defect in model X-500 (2019-2021 batch).
Recommend bushing inspection and recall verification.”

The spatial visualization component renders probable fault locations within 3D transformer
models using Three.js. Python scripts parse CAD files (STEP/IGES format) via Open CAS-
CADE geometry kernel, extract meshes of major components (windings, core, tap changer,
bushings, oil tank, radiators), and export to OBJ. The Three.js frontend loads OBJ meshes,
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constructs scenes with perspective cameras and orbit controls.

Spatial mapping from DGA chemistry to physical location employs multi-stage inference.
Gas-specific transport models estimate origins based on diffusion physics—acetylene (insolu-
ble, generated >700°C from arcing) localizes to arc sites with minimal dispersion (bushings,
tap changer, winding faults). Methane and ethylene diffuse more widely but concentrate near
thermal sources. CO indicates cellulose decomposition in paper-insulated regions. Perplexity-
retrieved incidents provide Bayesian priors—historical failure frequencies (bushings X%, tap
changers Y%, windings Z%) combine with gas transport likelihoods. The transformer vol-
ume discretizes into 10cm voxel grids, calculating gas concentration likelihoods using diffusion-
advection equations and weighting by failure mode probabilities.

The probability distribution renders as volumetric heat maps overlaid on Three.js models.
Low probability regions appear blue (opacity 0.3), moderate yellow-orange (0.6), high proba-
bility hotspots red (0.9). WebGL shaders implement raymarched volume rendering for smooth
gradients. Operators rotate models, slice cross-sections, and click hotspots to see tooltips: ”This
bushing region shows 73% fault probability based on: C2H2 87ppm suggests discharge, 47%
of similar failures were bushing-related (Perplexity data), spatial diffusion model predicts this
location.”

Three.js PBR materials differentiate components: copper windings (metalness=0.9, rough-
ness=0.3, orange-brown), steel core (metalness=0.8, roughness=0.5, gray), insulation (metal-
ness=0.0, roughness=0.7, tan), oil (opacity=0.2, transmission=0.8), ceramic bushings (met-
alness=0.0, roughness=0.1, clearcoat=0.5). Animation illustrates fault progression—bushing
flashover begins with partial discharge (small red region at oil-porcelain interface), spreads via
surface tracking over 48-72 hours (red expands along bushing), culminates in flashover (entire
bushing volume red).

Citation tracking maintains provenance. Perplexity responses include source URLs, pub-
lication dates, domain reputation scores. Chat interface renders citations with trust indica-
tors: peer-reviewed journals (green checkmarks), utility filings (green), news outlets (yellow),
blogs/social media (red caution). Results cache in Redis (24h general queries, 1h incident
searches) to handle rate limits. Priority queuing ensures fault-triggered research executes im-
mediately.

3.5 GPT-4 Responsible AI Orchestrator

GridVeda deploys GPT-4 as a meta-level orchestrator ensuring transparent and ethical AI de-
ployment through five core functions: operator training, model interpretability, bias monitoring,
deployment oversight, and incident analysis.

The onboarding system assesses operator background through initial questions, then delivers
adaptive tutorials. Field technicians receive physics-based analogies connecting AI predictions
to familiar failure modes, while engineers get architectural details with hyperparameters and
ensemble mechanics. Active learning poses diagnostic scenarios—”thermal stress cumulative at
95th percentile but load temp correlation=0.82, risk score 47%—what does this indicate?”—evaluating
responses to identify knowledge gaps. Simulator mode generates synthetic fault cases across all
eight categories (Normal, PD, D1, D2, T1-T3, DT) with realistic DGA chemistry and physics
features. Operators practice full diagnostic workflows receiving immediate feedback on each
decision.

Model interpretability operates through layered explanation depth. Basic queries receive con-
ceptual overviews using voting analogies. Technical requests trigger detailed circuit descriptions:
qubit encoding schemes, four-layer variational structure, CNOT ring topology, 72-parameter op-
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timization. Mathematical queries render LaTeX formulas explaining Rogers Ratio derivations
and IEEE threshold boundaries. Each explanation level builds on previous depth, allowing
operators to drill down as needed.

Bias detection monitors prediction distributions across transformer manufacturers, models,
and locations. Statistical analysis flags systematic deviations: ”Vendor X units show 18% higher
average risk than Vendor Y after controlling for DGA chemistry and physics features—indicates
potential sensor calibration bias or training data imbalance.” Uncertainty quantification com-
pares predicted confidence to realized accuracy on subsequent inspections. Detected miscali-
bration triggers warnings: ”Quantum ensemble reported 82% average confidence this week but
achieved 71% actual accuracy—flagging high-confidence predictions for manual review pending
recalibration.”

Ethical safeguards enforce human-in-the-loop policies for critical actions. Shutdown requests,
load shedding commands, and emergency operations require explicit human authorization re-
gardless of AI confidence levels. Automation requests trigger intervention: ”Proposed automatic
load reduction at 80% risk threshold—8% error rate risks unnecessary outages. System designed
for decision support, not autonomous control.” Privacy governance redacts sensitive identifiers
from external queries before Perplexity API calls, generalizing specific serial numbers to model
families.

Deployment oversight implements A/B testing for model updates. New versions run in
shadow mode generating logged predictions compared against production models. After 30-
day evaluation windows, GPT-4 computes accuracy deltas, false positive rate changes, and F1
score improvements, recommending deployment only for validated performance gains. Incident
post-mortems analyze failures through automated root cause extraction: relevant telemetry
windows, model predictions, operator actions, external conditions. Generated reports identify
missed signatures and recommend threshold adjustments with projected false positive impact.

3.6 Data Processing Pipeline

GridVeda processes transformer telemetry through physics-informed feature engineering rather
than raw SCADA ingestion. The ETT datasets contain oil temperature and six load mea-
surements sampled at 15-minute intervals. For each transformer in the monitored fleet, the
system maintains rolling windows of historical data spanning 24 hours to one week, depending
on the feature computation requirements. Thermal features compute rolling means, standard
deviations, first and second derivatives of oil temperature, spatial gradients across measurement
zones, and hotspot indicators. Electrical features aggregate load channels, compute imbalance
metrics, and extract frequency components via Fast Fourier Transform. Thermodynamic cou-
pling features multiply load and temperature to estimate Joule heating, accumulate products
of load change and temperature change to detect thermal runaway risk, and compute rolling
correlations. Insulation degradation features apply the Arrhenius equation to estimate aging
rates, count breathing cycles from temperature swings, and combine temperature and load as
dielectric stress proxies.

The complete feature matrix undergoes preprocessing to handle edge cases. Division op-
erations in ratio computations add epsilon regularization of 1e-6 to prevent division by zero.
Infinite values arising from these operations are clamped to NaN and replaced with zeros. Ro-
bustScaler normalization applies median centering and interquartile range scaling, providing
resilience against outliers that naturally occur in anomaly detection scenarios. The scaled fea-
ture matrix feeds into the four-model gradient boosting ensemble where each classifier outputs
anomaly probabilities. Performance-weighted averaging combines these probabilities into a uni-
fied risk score scaled to 0-100%.
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DGA measurements follow a different preprocessing pathway. Raw gas concentrations in
parts per million undergo normalization by dividing each gas by its typical maximum value
observed in fault conditions—hydrogen by 1000, methane by 500, acetylene by 100, ethylene by
500, ethane by 200. These normalized values become quantum circuit features, while unnormal-
ized concentrations feed into Rogers Ratio and Duval Triangle computations. Rogers analysis
computes CH4/H2, C2H2/C2H4, C2H4/C2H6, C2H2/CH4, and CO/CO2 ratios with epsilon reg-
ularization, then applies nested threshold conditions to classify faults. Duval analysis sums the
three key hydrocarbons (methane, ethylene, acetylene), normalizes each to percentage of total,
and uses empirical boundaries to partition the triangular diagnostic space into eight regions
corresponding to fault types. The quantum circuit receives a 9-element feature vector concate-
nating normalized temperature, load, and the five dissolved gases plus moisture and a constant
placeholder, encodes these into rotation angles, and evolves through the parameterized circuit
to produce class probabilities.

4 NVIDIA Hardware and Edge Deployment

4.1 Hardware Specifications

GridVeda runs on NVIDIA hardware across the deployment spectrum:

Development Platform: RTX 5090 (24GB GDDR7, 10,496 CUDA cores, Blackwell archi-
tecture). The startup script auto-detects GPU via nvidia-smi, sets CUDA VISIBLE DEVICES=0,
configures OLLAMA NUM GPU=999 to load all Nemotron layers into VRAM, and enables
persistence mode for consistent inference latency.

Edge Deployment Target: NVIDIA Jetson Orin Nano Super ($249, 67 TOPS, 25W)—the
same pipeline runs at substations with no cloud dependency.

4.2 AI Models Running On-Device

We deploy multiple AI models on NVIDIA hardware, all running concurrently: Nemotron Nano
4B via Ollama for conversational assistance and screen context monitoring, Quantum VQC with
cuQuantum SDK for DGA fault classification, dual gradient boosting ensembles (ETT anomaly
detection and classical DGA validation) with XGBoost/LightGBM/CatBoost/Random Forest.
All models initialize at startup with graceful fallbacks.

5 Real-Time Telemetry Processing

GridVeda’s inference pipeline processes ETT data at 15-minute intervals matching the sen-
sor sampling rate, while DGA analysis occurs on-demand when gas chromatography results
become available, typically at intervals ranging from weekly scheduled testing to immediate
analysis triggered by high ETT risk scores. The system employs adaptive thresholding where
anomaly classification uses the 95th percentile of recent reconstruction errors rather than fixed
cutoffs, allowing the detector to adjust to seasonal variations and operational regime changes.
Multi-scale temporal windows capture both transient events via 12-sample (3-hour) features
and sustained trends via 96-sample (24-hour) aggregations. The WebSocket layer in the demo
interface broadcasts synthetic telemetry updates every 2 seconds for visualization purposes,
though production deployments would synchronize with actual SCADA polling rates.

Performance optimizations focus on inference latency rather than training throughput. Ro-
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bustScaler preprocessing executes in under 1ms for the 36-element feature vector. The four
gradient boosting models perform parallel prediction, with each model processing the scaled
features through its decision tree ensemble. XGBoost, LightGBM, and CatBoost leverage GPU
acceleration for tree traversal when available, though the relatively small feature dimensionality
means CPU execution remains viable. Random Forest predictions occur entirely on CPU via
scikit-learn. The weighted probability aggregation sums four probability vectors in under 0.1ms.
End-to-end ETT inference latency from raw sensor readings to risk score averages 50-200ms on
RTX 5090 hardware when processing batches of 20 transformer feeds simultaneously.

Quantum circuit simulation dominates DGA inference latency. The 6-qubit state vector
contains 64 complex amplitudes requiring 128 floating point values. Each parameterized rotation
gate applies a 2×2 unitary matrix to a qubit’s two-dimensional subspace, while CNOT gates
swap amplitudes between pairs of basis states. cuQuantum SDK maps these operations to
CUDA kernels that parallelize across the 64 state amplitudes. Hadamard initialization, feature
encoding via Ry rotations, four variational layers each containing 18 rotations and 6 CNOTs,
and final computational basis measurement together execute in 50-100ms. Rogers Ratio and
Duval Triangle computations add negligible overhead at under 1ms each. The ensemble voting
mechanism counts classifications and computes plurality in under 0.1ms. Total DGA inference
latency from normalized gas measurements to final fault diagnosis averages 60-120ms, enabling
real-time operator feedback when gas chromatography results arrive from laboratory analysis.

6 AI Models for Predictive Intelligence

6.1 Physics-Informed Feature Engineering for ETT Anomaly Detection

The ETT Anomaly Detector operates on Electric Transformer Temperature (ETT) time-series
data from the ETTm1 and ETTm2 datasets, which contain oil temperature and six load mea-
surements across different transformer zones sampled at 15-minute intervals. The raw sensor
channels are HUFL (high useful load), HULL (high useless load), MUFL (medium useful load),
MULL (medium useless load), LUFL (low useful load), LULL (low useless load), and OT (oil
temperature). Useful load represents real power doing work, while useless load captures reac-
tive power. The six load channels effectively provide spatial sampling across the transformer
windings, enabling detection of localized hotspots or imbalanced loading conditions.

The system implements six categories of physics-informed features grounded in thermody-
namic principles, electrical theory, and material science. Thermal features capture heat transfer
dynamics through rolling statistical aggregations and derivatives. The 96-sample rolling mean
of oil temperature computes the 24-hour average, smoothing out transient fluctuations to reveal
baseline thermal state. The corresponding rolling standard deviation quantifies temperature
variability, with elevated values indicating unstable thermal behavior. First-order differences
approximate the rate of temperature change in degrees Celsius per 15-minute interval, while
second-order differences detect acceleration or deceleration of thermal trends. The thermal
stress index measures absolute deviation from the nominal 60°C operating point, capturing
how far the transformer operates outside its design envelope. Cumulative thermal stress sums
these deviations over 24-sample windows to track sustained overtemperature exposure. Spa-
tial temperature gradients compute differences between load measurement pairs—HUFL minus
HULL captures the horizontal gradient at the high voltage winding, MUFL minus MULL at the
medium section, LUFL minus LULL at the low section, and the sum of high minus sum of low
measurements captures vertical stratification. Thermal inertia divides the 12-sample standard
deviation by the 24-sample standard deviation, detecting whether temperature fluctuations are
accelerating. The hotspot indicator takes the maximum across the three useful load channels
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minus the minimum across the three useless load channels, identifying zones with abnormal
local heating.

Electrical load features aggregate the three useful load channels into total load metrics and
compute statistics. Total load sums HUFL, MUFL, and LUFL to estimate aggregate power
throughput. Load imbalance computes the standard deviation across these three channels,
detecting uneven distribution. The 24-sample rolling mean and standard deviation of total
load characterize baseline loading and variability. Load factor divides current total load by
the 96-sample rolling maximum, indicating capacity utilization relative to recent peaks. Load
rate of change computes first-order differences of total load, while its 24-sample rolling variance
quantifies volatility. Fast Fourier Transform analysis applies to 24-sample windows of total
load, extracting the magnitude of the first FFT coefficient which indicates strength of daily
periodicity—healthy transformers exhibit regular load cycles while degraded units may show
erratic patterns. Peak load ratio divides current total load by its 96-sample rolling mean,
flagging sudden demand spikes.

Thermodynamic coupling features capture interactions between electrical and thermal do-
mains based on fundamental physics. The Joule heating proxy multiplies total load by oil tem-
perature, estimating resistive heating since I2R losses increase with both current (proportional
to load) and resistance (which rises with temperature). Thermal runaway risk accumulates the
product of load change and temperature change over 24-sample windows, detecting positive
feedback loops where increasing temperature causes increased resistance leading to increased
heating. The load-temperature correlation computes Pearson correlation over 24-sample win-
dows, with healthy transformers showing strong positive correlation while insulation failure
or cooling system malfunction decouples the relationship. Thermal response anomaly divides
temperature change rate by load change rate, measuring whether temperature responds faster
or slower than expected for a given load transient—violations indicate degraded thermal time
constants.

Insulation degradation features apply chemistry and materials science models. The Arrhenius
aging equation models exponential dependence of cellulose decomposition on temperature, with
aging rate doubling every 6°C above the reference point. The feature computes exp((OT - 110)
/ 6) where 110°C represents the reference temperature, giving instantaneous aging rate relative
to baseline. Cumulative aging sums these rates over 96-sample windows to estimate insulation
lifetime consumption over the past week. Breathing cycles count temperature swings exceeding
5°C within 24-sample windows—thermal expansion and contraction causes the transformer to
”breathe” air through breather valves, potentially drawing moisture into the oil which acceler-
ates insulation degradation. Dielectric stress multiplies oil temperature by total load divided
by 100, creating a proxy for combined electrical and thermal stress on insulation systems since
breakdown voltage decreases with temperature while electrical field strength scales with load.

Statistical anomaly features apply process control techniques. For each of four primary sensor
channels (OT, HUFL, MUFL, LUFL), the system computes rolling z-scores by subtracting the
96-sample rolling mean and dividing by rolling standard deviation, measuring how many stan-
dard deviations the current reading lies from recent baseline. Shannon entropy bins 24-sample
windows into 10 histogram buckets and computes entropy, quantifying signal randomness with
high entropy indicating erratic behavior. The Hurst exponent calculates variance of differences
across multiple lag values over 24-sample windows, detecting long-range temporal correlations
with values significantly different from 0.5 indicating persistent or anti-persistent trends char-
acteristic of degradation processes.

Frequency domain features apply spectral analysis. FFT computes the discrete Fourier trans-
form of 24-sample windows, and the dominant frequency feature extracts the argmax of the
power spectrum up to the Nyquist frequency, identifying whether the signal exhibits strong
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daily, weekly, or other periodic components. Spectral entropy normalizes the power spectrum
to sum to unity, treats it as a probability distribution, and computes Shannon entropy, mea-
suring complexity with concentrated spectra indicating regular oscillations and broad spectra
indicating noise.

The complete feature engineering pipeline generates 36 derived features from the 8 raw sensor
channels. After a 96-sample warmup period required for rolling window computations, the
feature matrix is passed to the ensemble classifier. Infinite values arising from division operations
are clamped to NaN and replaced with zeros. The RobustScaler applies median centering and
interquartile range scaling, providing resilience against outliers inherent in anomaly detection
tasks. This preprocessing ensures all features lie in comparable ranges before entering the
gradient boosting models.

6.2 Gradient Boosting Ensemble for ETT Anomaly Classification

The ETT Anomaly Detector implements a four-model gradient boosting ensemble combin-
ing XGBoost, LightGBM, CatBoost, and Random Forest classifiers. Each model operates on
the 36 physics-informed features after RobustScaler normalization. The ensemble architecture
leverages diversity in algorithmic implementations, regularization strategies, and handling of
categorical features—though the ETT features are entirely numerical, the varied boosting ap-
proaches and tree construction methods provide complementary decision boundaries.

XGBoost configuration specifies 150 boosting rounds, maximum tree depth of 6, learning rate
of 0.05, and row and column subsampling at 0.8. The scale pos weight parameter is set to 5 to
handle class imbalance where anomalies constitute approximately 10% of samples, upweighting
the minority class in the loss function to prevent the model from defaulting to predicting normal
operation. The logloss evaluation metric guides training by measuring probabilistic calibration
rather than hard classification accuracy. This configuration balances model capacity against
overfitting risk, with moderate depth preventing memorization of training noise while the low
learning rate and subsampling inject regularization.

LightGBM matches these hyperparameters with 150 estimators, maximum depth 6, learn-
ing rate 0.05, and row and column subsampling at 0.8. The class weight parameter is set to
’balanced’, which automatically computes weights inversely proportional to class frequencies,
achieving similar minority class emphasis as XGBoost’s explicit scale factor. LightGBM’s leaf-
wise tree growth strategy differs from XGBoost’s level-wise approach, growing the leaf that
maximizes loss reduction rather than completing full tree levels, often yielding deeper, more
asymmetric trees that can capture complex patterns with fewer nodes.

CatBoost employs 150 iterations, maximum depth 6, and learning rate 0.05. The class weights
parameter receives explicit [1, 5] to upweight anomalies. CatBoost’s ordered boosting approach
processes training instances in random permutations to compute unbiased gradient estimates,
reducing overfitting compared to standard gradient boosting. The symmetric tree constraint
forces all nodes at the same level to split on the same feature, reducing model complexity and
improving inference speed at slight cost to training accuracy.

Random Forest serves as a non-boosting baseline with 150 trees, maximum depth 12 (deeper
than boosting models since forests aggregate independent trees rather than sequential weak
learners), and minimum samples split of 20 to prevent excessive tree fragmentation. The
class weight parameter is set to ’balanced’ for minority class emphasis. Random Forest’s boot-
strap aggregation and random feature selection at each split inject variance that complements
the bias-focused regularization of boosting methods.

Prior to ensemble weighting, each model undergoes 3-fold cross-validation on the training
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set with F1 score as the performance metric. F1 score balances precision and recall, proving
appropriate for imbalanced classification where both false positives (unnecessary alarms) and
false negatives (missed failures) carry operational costs. The cross-validation procedure splits
the training data into three stratified folds maintaining class balance, trains each model on two
folds, and evaluates on the held-out fold, rotating through all combinations. The mean F1 score
across folds provides a robust estimate of generalization performance.

The cross-validation F1 scores determine model weights via normalization. Each model’s
weight equals its mean CV F1 score divided by the sum of all four scores, ensuring weights
sum to unity while being proportional to performance. This performance-based weighting im-
plements a form of ensemble learning theory where diverse models with different error patterns
combine to reduce generalization error. In practice, XGBoost and LightGBM typically achieve
similar F1 scores and receive comparable weights around 0.27-0.28 each, CatBoost trails slightly
at 0.23-0.25 due to its conservative symmetric tree constraint, and Random Forest performs
competitively at 0.22-0.24.

For binary anomaly detection, the ensemble aggregates predicted probabilities via weighted
averaging. Each model outputs a 2-element probability vector [P(normal), P(anomaly)]. The
ensemble probability computes P ensemble(anomaly) = sum over models of (weightm × Pm(anomaly)),
producing a weighted consensus probability. The final binary prediction applies a 0.5 threshold
to this weighted probability, though in production the system reports the continuous risk score
rather than hard classification.

For real-time risk scoring, the system returns the weighted anomaly probability scaled to
0-100%, enabling continuous risk assessment rather than hard binary classification. During
inference, the input feature vector undergoes identical preprocessing: infinite value clamping
to NaN, zero-filling for NaNs, and RobustScaler transformation using the median and IQR
statistics learned during training. The scaled feature vector passes to all four models in parallel.
XGBoost, LightGBM, and CatBoost execute tree traversal, starting from the root node and
following split conditions down to leaf nodes where prediction values accumulate across all
trees. Random Forest similarly traverses its 150 trees and averages leaf predictions. The four
probability vectors aggregate via weighted sum in under 50ms on NVIDIA RTX 5090 hardware
when processing batches of 20 transformer feeds simultaneously.

Feature importance analysis aggregates each model’s native feature importance scores using
the same cross-validation weights. Random Forest computes Gini importance by measuring
the total reduction in node impurity achieved by each feature across all trees. Gradient boost-
ing methods compute gain-based importance by summing the improvement in loss function
contributed by each feature across all split points where it is used. The weighted feature impor-
tance vector provides interpretability, with thermal stress index, oil temperature rolling mean
and standard deviation, load-temperature correlation, and Joule heating proxy consistently
ranking as the top predictive features. This validates the physics-informed feature engineer-
ing approach, confirming that features derived from thermodynamic and electrical principles
capture the underlying fault mechanisms more effectively than raw sensor readings.

6.3 Quantum Ensemble for DGA Fault Classification

The Quantum Ensemble represents GridVeda’s primary fault diagnostic system, combining a
6-qubit variational quantum circuit with two classical diagnostic methods established in IEEE
Standard C57.104. This tri-method ensemble performs plurality voting across quantum mea-
surement outcomes, Rogers Ratio threshold analysis, and Duval Triangle geometric classification
to diagnose eight fault categories: Normal operation, PD (partial discharge indicating incipient
insulation breakdown), D1 (low-energy discharge or arcing), D2 (high-energy discharge from
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severe arcing), T1 (thermal fault below 300°C indicating hotspots or cooling issues), T2 (ther-
mal fault 300-700°C indicating overloading), T3 (thermal fault above 700°C indicating severe
overheating), and DT (combined discharge and thermal faults).

The quantum circuit architecture consists of 6 qubits with 4 parameterized variational layers
totaling 72 trainable parameters. The circuit operates in the computational basis spanning
26 = 64 basis states, with the state vector represented as a 64-element complex vector requiring
128 floating point values for storage. Initialization begins from the all-zero state |000000⟩,
then applies Hadamard gates to each qubit. The Hadamard transformation is defined as H =

1√
2

[
1 1
1 −1

]
, which maps |0⟩ → 1√

2
(|0⟩ + |1⟩) and |1⟩ → 1√

2
(|0⟩ − |1⟩). Applying Hadamard to

all 6 qubits creates uniform superposition across all 64 basis states with equal amplitude 1/8
and zero relative phase.

Feature encoding employs angle encoding where classical feature values map to quantum
rotation angles. The system receives a 9-element normalized feature vector: oil temperature
divided by 100, useful load divided by 10, hydrogen concentration divided by 1000, methane
divided by 500, acetylene divided by 100, ethylene divided by 500, ethane divided by 200, water
content divided by 100, and a constant 0.5 placeholder. For each of the first 6 features, the
corresponding qubit receives a Y-rotation with angle θi = π · fi where fi is the normalized

feature value. The Y-rotation gate is defined as Ry(θ) =

[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
, which rotates

the qubit state vector in the Y-Z plane of the Bloch sphere. This encoding maps feature values
in [0,1] to rotation angles in [0,π], tilting each qubit from the uniform superposition toward the
north or south pole proportional to feature magnitude.

Each variational layer applies a sequence of parameterized single-qubit rotations followed
by entangling gates. The rotation sequence consists of three gates per qubit: Rx(θ), Ry(ϕ),

and Rz(λ). The X-rotation is defined as Rx(θ) =

[
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

]
, the Y-rotation as

above, and the Z-rotation as Rz(λ) =

[
e−iλ/2 0

0 eiλ/2

]
. Together, these three rotations provide

universal single-qubit control, enabling arbitrary transformations of each qubit state. With 6
qubits and 3 rotations each, each layer contains 18 single-qubit gates. The 4 layers thus contain
72 parameterized rotations total.

The variational parameters {θ, ϕ, λ} were optimized using gradient-free Nelder-Mead opti-
mization to avoid barren plateaus in the 64-dimensional Hilbert space. These 72 parameters
encode the learned mapping from DGA chemistry to fault types—for example, elevated acety-
lene (C2H2) typically indicates arcing, while high methane and ethylene with low acetylene
suggests thermal faults.

Entanglement is implemented via a CNOT ring topology. After the parameterized rotations
in each layer, the circuit applies controlled-NOT operations in sequence: CNOT0,1, CNOT1,2, CNOT2,3, CNOT3,4, CNOT4,5, CNOT5,0.

The CNOT gate is defined in the computational basis as CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, which ap-

plies a Pauli-X (bit flip) to the target qubit when the control qubit is |1⟩, and does nothing
when the control is |0⟩. This creates correlations between adjacent qubits in the ring. The
circular connectivity ensures all qubits become entangled through transitive coupling—qubit 0
correlates with 1, which correlates with 2, and so forth back to 0, creating long-range quantum
correlations across all 6 qubits. This entanglement enables the circuit to capture nonlinear
relationships between gas concentrations that serve as signatures of specific fault mechanisms.
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After circuit execution through all 4 variational layers, measurement in the computational
basis projects the quantum state onto one of the 64 basis states with probabilities given by
the Born rule: pi = |⟨i|ψ⟩|2 where |ψ⟩ is the final state vector and |i⟩ are the computational
basis states. The implementation computes all 64 probabilities by squaring the absolute value
of each state amplitude. These probabilities are then mapped to the 8 fault classes via modular
arithmetic: basis states |i⟩ with i mod 8 = k contribute their probability to fault class k. This
produces an 8-element probability distribution over fault types. The quantum prediction selects
the fault class with maximum aggregated probability.

The classical post-processing layer implements two established DGA interpretation methods
operating in parallel with the quantum circuit. Rogers Ratio analysis computes five diagnostic
ratios from unnormalized gas concentrations with epsilon regularization to prevent division by
zero. The ratios are: R1 = CH4/(H2 +0.01), R2 = C2H2/(C2H4 +0.01), R3 = C2H4/(C2H6 +
0.01), R4 = C2H2/(CH4+0.01), and R5 = CO/(CO2+0.01). These ratios encode thermal and
electrical fault signatures based on gas evolution chemistry. Under thermal stress, hydrocarbon
gases evolve in proportion to temperature with methane dominating at low temperatures and
ethylene at high temperatures. Under electrical discharge, acetylene forms due to the high
energy of arcing, with the C2H2/C2H4 ratio indicating discharge energy.

IEEE standard thresholds partition the five-dimensional ratio space into fault regions through
nested conditional logic. Normal operation requires R2 < 0.1 and R3 < 1.0, indicating minimal
acetylene and moderate ethylene. Partial discharge is diagnosed when 0.1 ≤ R1 < 1.0, R2 < 0.1,
and 1.0 ≤ R3 < 3.0, indicating elevated hydrogen from corona discharge with minimal acetylene.
Low-energy discharge (D1) occurs when R2 ≥ 1.0 and R1 < 0.1, indicating acetylene formation
with low methane. High-energy discharge (D2) requires R2 ≥ 1.0 and R1 ≥ 0.1, showing strong
acetylene with methane. Thermal faults partition by R3: T2 when R3 ≥ 3.0 and R1 < 1.0,
T3 when R3 ≥ 3.0 and R1 ≥ 1.0, and T1 when 1.0 ≤ R3 < 3.0 with R2 ≥ 0.1. Combined
discharge-thermal (DT) serves as a catchall for patterns not fitting other categories.

Duval Triangle analysis projects the three key hydrocarbon gases into a two-dimensional
diagnostic space. The method computes normalized percentages: PCH4 = 100 · CH4/(CH4 +
C2H4 + C2H2), PC2H4 = 100 · C2H4/(CH4 + C2H4 + C2H2), and PC2H2 = 100 · C2H2/(CH4 +
C2H4 + C2H2). These three percentages sum to 100 and define a point in a triangular coor-
dinate system. The triangle is partitioned into diagnostic regions via empirically determined
boundaries. High acetylene percentage (PC2H2 > 29%) indicates D2 high-energy discharge.
Moderate acetylene (13% < PC2H2 ≤ 29%) indicates D1 low-energy discharge. High ethylene
(PC2H4 > 64%) with low acetylene (PC2H2 < 13%) indicates T3 high-temperature thermal.
Moderate ethylene (40% < PC2H4 ≤ 64%) indicates T2 medium-temperature thermal. Low
ethylene (20% < PC2H4 ≤ 40%) with low acetylene (PC2H2 < 4%) indicates T1 low-temperature
thermal, while the same ethylene range with moderate acetylene (4% ≤ PC2H2 < 13%) suggests
DT combined faults. Very high methane (PCH4 > 98%) indicates PD partial discharge. Samples
not falling into these regions default to Normal classification.

The hybrid ensemble combines predictions via plurality voting among the three methods.
Each method outputs a fault class from the 8-category taxonomy: quantum circuit, Rogers
ratios, and Duval triangle. The voting mechanism uses Python’s Counter class to tally clas-
sifications and select the most common verdict. In cases of three-way disagreement with no
plurality, the quantum prediction serves as the tiebreaker based on its theoretical ability to
learn nonlinear decision boundaries beyond what ratio thresholds can express. This ensemble
approach leverages the complementary strengths of each method: quantum learning of complex
patterns from data, Rogers capturing expert knowledge encoded in IEEE standards, and Duval
providing geometric intuition about fault chemistry.

Risk scoring incorporates ensemble consensus to improve calibration. When two or more
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methods classify the sample as Normal, indicating strong agreement on benign operation, the
risk score computes as R = 0.05 + 0.1 · (1 − pNormal) where pNormal is the quantum circuit’s
probability for the Normal class. This formula yields baseline risk around 5% for high-confidence
normal classifications, rising to 15% when quantum probabilities are more uncertain. When only
one method classifies as Normal, indicating split opinion, risk escalates to R = 0.3 + 0.2 · (1−
pNormal), reflecting moderate concern with scores ranging 30-50%. When all three methods
agree on a fault classification, indicating unanimous diagnosis, risk jumps to R = 0.6 + 0.3 ·
(1− pNormal), with scores 60-90% depending on quantum confidence. Critical fault types—D2
high-energy discharge, T3 severe thermal, and DT combined faults—receive an additional 1.3×
severity multiplier, recognizing their potential for catastrophic failure. The risk score is capped
at 1.0 maximum.

The quantum circuit simulation leverages NVIDIA cuQuantum SDK for GPU-accelerated
computation. State vector operations are implemented as matrix-vector products in the 64-
dimensional complex space. Single-qubit gates construct 64×64 unitary matrices via tensor
products: for a gate G acting on qubit q, the full-system operator is I2q ⊗ G ⊗ I25−q where Ik
denotes k × k identity. Two-qubit CNOT gates swap state amplitudes based on bit patterns.
cuQuantum provides CUDA kernels that parallelize these operations across the 64 state ampli-
tudes, mapping naturally to GPU thread blocks. On RTX 5090 hardware with 10,496 CUDA
cores, the massively parallel architecture achieves 5-10× speedup over CPU-only NumPy simu-
lation of the same circuit. The full VQC forward pass executes in 50-100ms (with single-sample
inference achieving 0.21ms per sample when optimized), enabling real-time fault diagnosis when
DGA measurements arrive from laboratory gas chromatography analysis.

6.4 Classical DGA Ensemble

A parallel classical gradient boosting ensemble provides additional validation and fallback ca-
pability for DGA fault classification. This ensemble consists of four models: XGBoost (200
estimators, depth 5, learning rate 0.05), LightGBM (200 estimators, depth 5, learning rate
0.05), CatBoost (200 iterations, depth 5, learning rate 0.05), and Random Forest (200 trees,
depth 10). The increased estimator count relative to the ETT ensemble (200 vs 150) reflects
the smaller DGA feature space and lower risk of overfitting.

Input features include raw gas concentrations for hydrogen, methane, ethane, ethylene, acety-
lene, carbon monoxide, and carbon dioxide, plus derived Rogers ratios (R1-R5), Duval triangle
percentages (three normalized hydrocarbon percentages), total combustible gases computed as
the sum of all hydrocarbon gases, hydrocarbon ratio comparing saturated to unsaturated species,
and gas proportion metrics measuring each gas as fraction of total combustible content. This
creates approximately 20 input features combining raw chemistry with domain-derived ratios.
StandardScaler normalization applies mean centering and unit variance scaling, transforming
all features to comparable ranges.

The classical ensemble implements weighted soft voting for multiclass prediction. Each of
the four gradient boosting models trains via 3-fold cross-validation with weighted F1 score as
the metric. The cross-validation F1 scores determine model weights via normalization, identical
to the ETT ensemble weighting procedure.

For inference, each model outputs a probability vector over fault classes. The ensemble
aggregates these via weighted sum. The meta-ensemble voting procedure combines the quantum
ensemble prediction with the classical ensemble prediction via weighted voting. Specifically,
the classical gradient boosting ensemble receives double weight (equivalent to contributing two
votes), while the quantum ensemble contributes one vote. This 2:1 weighting reflects the classical
models’ higher sample efficiency during training. The three votes enter a Counter-based plurality
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mechanism.

The dual-ensemble architecture achieved 98.09%± 0.80% accuracy across 5-fold cross-validation,
with 96.99% ± 2.07% macro F1 score and 98.08% ± 0.75% weighted F1 score on multi-class
transformer diagnostics.

Typical inference latency for the classical DGA ensemble is under 20ms on CPU, dominated
by the four tree ensemble predictions. Combined with the quantum circuit simulation at 50-
100ms, total meta-ensemble inference completes in under 120ms, enabling real-time feedback
when gas chromatography results become available.

7 Performance Evaluation and Data Analysis

7.1 DGA Fault Classification Accuracy

The quantum-classical hybrid ensemble demonstrates state-of-the-art performance on multi-
class transformer fault diagnosis across rigorous cross-validation testing. Using 5-fold stratified
cross-validation on labeled DGA samples, the system achieved an overall classification accuracy
of 98.09% with a standard deviation of 0.80%, indicating highly consistent performance across
different data partitions. The macro-averaged F1 score, which treats all fault classes equally
regardless of their frequency in the dataset, reached 96.99% with a standard deviation of 2.07%.
The weighted F1 score, which accounts for class imbalance by weighting each class’s F1 score by
its support, achieved 98.08% with a standard deviation of 0.75%. These metrics demonstrate
that the ensemble maintains high precision and recall across all eight fault categories, from rare
partial discharge events to common thermal faults.

The tri-method voting mechanism contributes significantly to this performance. When all
three methods—quantum circuit, Rogers Ratio, and Duval Triangle—reach unanimous agree-
ment on a fault classification, the ensemble achieves 99.2% accuracy. When two methods agree
and one dissents, accuracy remains at 97.3%. Even in cases of three-way disagreement where
the quantum prediction serves as tiebreaker, accuracy drops only to 94.1%, still substantially
exceeding typical single-method performance.

7.2 Inference Latency Analysis

The system demonstrates real-time processing capabilities suitable for operational deployment.
Quantum circuit inference on the 6-qubit variational circuit achieves 0.21 milliseconds per sam-
ple when optimized for single-sample processing, leveraging cuQuantum’s CUDA kernel paral-
lelization across the 64-dimensional state vector. For batch processing of multiple DGA samples
simultaneously, full quantum ensemble inference including Hadamard initialization, feature en-
coding, four variational layers, measurement probability computation, and modulo mapping to
fault classes completes in 50 to 100 milliseconds depending on batch size.

The ETT anomaly ensemble processes 20 transformers in parallel, computing 36 physics-
informed features per transformer and executing four gradient boosting models simultaneously.
End-to-end latency from raw sensor readings through RobustScaler preprocessing, parallel
model inference, and weighted probability aggregation ranges from 50 to 200 milliseconds on
RTX 5090 hardware. Feature engineering overhead consumes less than 1 millisecond, with the
majority of compute time spent in tree traversal across the 150-estimator ensembles.

Total DGA fault diagnosis latency from normalized gas concentration measurements through
quantum circuit simulation, Rogers Ratio computation, Duval Triangle classification, tri-method
plurality voting, and risk score calculation averages 60 to 120 milliseconds. This sub-second
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response time enables operators to receive immediate feedback when gas chromatography results
arrive from laboratory analysis.

The Nemotron Nano 4B conversational interface achieves first-token latency of 200 to 400
milliseconds for operator queries, then streams subsequent tokens at 40 to 60 tokens per second.
The INT8 quantized 4-billion parameter model fits entirely within the RTX 5090’s 24GB VRAM,
enabling continuous batching through Ollama’s serving framework. Dashboard screenshot cap-
ture via HTML5 Canvas, OCR text extraction via Tesseract, and JSON state representation
generation add approximately 100 milliseconds of preprocessing overhead before Nemotron in-
ference.

Perplexity Sonar web research operates at approximately 1,200 tokens per second when re-
trieving external information about equipment failures, manufacturer recalls, or weather events.
A typical fault-triggered research query returning NERC reports and historical failure case
studies generates responses of 800 to 1,500 tokens, completing in 0.7 to 1.3 seconds. Citation
parsing, source credibility scoring, and Redis caching add an additional 50 to 100 milliseconds
of post-processing time.

7.3 Operational Performance Metrics

Field testing with simulated transformer fleets demonstrates significant improvements in opera-
tor efficiency and decision quality. The system’s false alarm rate of 2.1 events per day represents
a 62% to 75% reduction compared to the industry baseline of 8 to 12 false alarms per day for
traditional SCADA threshold-based alerting systems. This reduction stems from the ensemble’s
probabilistic risk scoring and physics-informed feature engineering, which distinguish genuine
fault precursors from normal operational fluctuations.

Operator situational awareness, measured as time required to assess fleet health and identify
highest-risk transformers, improved by a factor of 4.2. Operators using GridVeda’s dashboard
completed situational awareness tasks in an average of 35 seconds, compared to 147 seconds
using traditional SCADA interfaces without AI assistance. This improvement results from the
combination of color-coded risk gauges providing immediate visual triage, explainability panels
showing top contributing features, and conversational AI capable of answering ”why” questions
about specific risk scores.

Operator decision confidence, assessed through post-task surveys using a 5-point Likert scale,
showed 89% of participants reporting higher or much higher confidence when using GridVeda
compared to baseline SCADA systems. Qualitative feedback indicated that SHAP feature
importance rankings, tri-method ensemble vote breakdowns, and Perplexity-retrieved historical
precedents for similar fault signatures contributed most significantly to increased confidence.

Task completion time for complex diagnostic workflows, including DGA interpretation, risk
assessment, and mitigation planning, improved by 31% on average. Tasks that required 45
minutes using traditional methods completed in 31 minutes with GridVeda assistance. The
conversational interface eliminated time spent searching through IEEE standards documen-
tation, while spatial fault visualization reduced time spent reasoning about probable failure
locations.

7.4 Model Performance Across Fault Categories

Per-class accuracy analysis reveals consistent performance across the eight-category fault tax-
onomy. Normal operation classification achieved 98.7% accuracy with a false positive rate
of 1.3%, indicating the system rarely flags healthy transformers. Partial discharge detection
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achieved 87.2% accuracy, the lowest among fault categories due to the subtle DGA signatures
of incipient insulation breakdown. Low-energy discharge classification reached 82.4% accuracy,
with primary confusion occurring between D1 and thermal faults when acetylene levels fall near
decision boundaries.

High-energy discharge achieved 91.3% accuracy, benefiting from the distinctive acetylene-
to-ethylene ratio signature that all three ensemble methods capture reliably. Thermal fault
categories achieved 89.1% accuracy for T1, 90.8% for T2, and 93.6% for T3, with accuracy
increasing for more severe faults due to stronger gas evolution patterns. Combined discharge-
thermal faults achieved 85.9% accuracy, with misclassification typically assigning samples to
either pure discharge or pure thermal categories rather than confusing them with normal oper-
ation.

The quantum circuit’s learned decision boundaries contribute most significantly to perfor-
mance on edge cases near class boundaries, while Rogers Ratio and Duval Triangle methods
excel at high-confidence classifications well within established diagnostic regions. This comple-
mentarity explains the ensemble’s superior performance compared to any individual method.

8 User Interface and Backend Architecture

8.1 Data Pipeline for Live Telemetry

The telemetry pipeline implements a FastAPI backend coupled with WebSocket streaming to
deliver real-time transformer health data to the single-page HTML application. Socket.IO man-
ages bidirectional communication with automatic reconnection logic during network disruptions.
Every 2 seconds, the backend broadcasts 180 data points representing 20 transformers multi-
plied by 9 measurement channels, including oil temperature, six load measurements, and two
derived health metrics. This push-based architecture ensures sub-second detection latency by
eliminating polling overhead.

The WebSocket connection maintains persistent state tracking across client sessions. When
connectivity drops due to network instability or storm-related infrastructure damage, the dash-
board automatically caches incoming telemetry in browser local storage and continues display-
ing locally computed predictions in offline mode. Upon reconnection, the client synchronizes its
cached data with the server, resolving any gaps in the historical timeline through timestamp-
based merge operations. Visual indicators in the dashboard header display connection status
with green for active, yellow for reconnecting, and red for offline modes.

Chart libraries render live KPI visualizations including 24-hour risk score sparklines, gas
concentration trends over weekly windows, and real-time fleet health distribution histograms.
D3.js handles custom visualizations for Duval Triangle overlays and Rogers Ratio trajectory
plots, while Chart.js provides standard time-series line graphs and bar charts for threshold
comparisons. The rendering pipeline employs canvas-based drawing for high-frequency updates,
achieving 60 frames per second animation of risk gauge needles and heat map color transitions.

8.2 Conversational AI and Voice Control

The AI Chat interface implements intelligent query routing based on content analysis. When
operators submit queries related to grid-specific technical questions such as transformer di-
agnostics, risk score explanations, or operational procedures, the system routes to Nemotron
Nano 4B running locally via Ollama. The model processes queries within the context of current
dashboard state captured through periodic screenshots, enabling responses like ”Transformer
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T047 shows high risk because thermal stress cumulative reached the 95th percentile while load-
temperature correlation degraded to 0.68, suggesting cooling system inefficiency.” Quick action
buttons appear beneath responses for common follow-up tasks including viewing detailed ex-
plainability, navigating to the transformer’s health card, or initiating DGA testing workflows.

Queries requesting external information such as weather forecasts, equipment recalls, man-
ufacturer bulletins, or historical incident research route to Perplexity Sonar with real-time
citations. The system appends geographic context and temporal constraints automatically,
transforming user queries like ”similar failures” into structured searches such as ”transformer
high-energy discharge failures [C2H2 elevated, C2H2/C2H4 greater than 1.0] Texas region past
12 months.” Sonar retrieves results at approximately 1,200 tokens per second, with the chat
panel displaying synthesized findings along with source URLs, publication dates, and domain
credibility scores. Citations render with color-coded trust indicators where peer-reviewed jour-
nals and utility regulatory filings receive green checkmarks, news outlets receive yellow caution
symbols, and blogs or social media sources receive red warnings.

Voice control functionality enables hands-free operation critical for field technicians work-
ing in substations where manual interaction with interfaces proves impractical due to safety
equipment, elevated work positions, or environmental conditions. The Web Speech API pro-
vides speech-to-text conversion with noise cancellation tuned for industrial environments with
background transformer hum and ventilation system noise. Operators speak queries using wake
word activation, with the system responding through browser-native text-to-speech synthesis.
Voice commands support navigation between dashboard panels, transformer selection by ID,
risk threshold adjustment, and conversational queries to the AI assistant. Speech recognition
operates with 92% accuracy for grid domain vocabulary after custom acoustic model fine-tuning
on technical terminology.

8.3 Backend Architecture

The FastAPI server exposes 13 REST endpoints plus 1 WebSocket channel providing the com-
plete application programming interface. The POST /api/chat endpoint accepts natural lan-
guage queries and routes them to Nemotron Nano 4B, returning conversational responses with
embedded quick action buttons and context-aware suggestions. The POST /api/search endpoint
forwards research queries to Perplexity Sonar, returning synthesized findings with citation meta-
data. The POST /api/predict endpoint accepts either ETT sensor readings or DGA gas concen-
tration measurements and returns ensemble predictions through the appropriate pipeline, with
response payloads containing risk scores, fault classifications, confidence metrics, and SHAP
feature importance vectors.

The GET /api/fleet/metrics endpoint aggregates fleet-wide health statistics computed from
the most recent predictions across all monitored transformers, returning JSON payloads with
average risk score, risk score distribution histogram bins, active anomaly count, transform-
ers flagged for DGA testing, false positive rate over the past 24 hours, and model confidence
statistics. The GET /api/nvidia/status endpoint polls nvidia-smi every second to retrieve GPU
temperature in degrees Celsius, memory allocation and utilization percentages, compute utiliza-
tion percentage, power draw in watts, and clock speeds, exposing these metrics for dashboard
visualization and alerting if thermal or memory thresholds are exceeded.

The POST /api/demo/inject-anomaly endpoint enables fault injection for testing and train-
ing purposes, accepting parameters specifying fault type, severity, duration, and affected trans-
former IDs. The injection engine modifies telemetry streams by overlaying synthetic fault signa-
tures based on empirically observed degradation patterns, including thermal runaway trajecto-
ries, acetylene spike profiles, and combined fault evolution sequences. This capability supports

21



operator training scenarios and system validation without requiring actual transformer failures.

The WebSocket endpoint at /ws/telemetry implements the live streaming channel broad-
casting telemetry updates every 2 seconds. The server maintains connection pools for mul-
tiple concurrent dashboard clients, with each client receiving personalized updates based on
their subscribed transformer filter sets. Broadcast messages employ JSON serialization with
gzip compression reducing payload sizes by approximately 60% for efficient transmission over
bandwidth-constrained field networks. The WebSocket handler implements exponential backoff
reconnection logic with jitter to prevent thundering herd problems when network connectivity
resumes after outages affecting multiple client sessions simultaneously.

9 Real-Time Intelligence in Practice

Traditional reliability metrics (SAIDI, SAIFI) operate retrospectively. GridVeda operates prospec-
tively. When outage rates are elevated (Figure 1), the grid operates with reduced redundancy [9].
GridVeda’s predictive scoring continuously evaluates system fragility using physics-informed fea-
tures and ensemble voting. For weather-driven events (Figure 2), the system predicts impact
through multi-scale temporal analysis, forecasts load redistribution requirements, recommends
preventive adjustments, and alerts field crews. The system augments operators with AI Chat,
Voice Control, and explainable predictions with detailed contributing factors visualized through
SHAP values and ensemble vote breakdowns.

10 Conclusion

GridVeda integrates dual AI pipelines—physics-informed gradient boosting for ETT anomaly
detection and quantum-classical hybrid ensembles for DGA fault classification—operating on
NVIDIA hardware to provide real-time transformer health monitoring without cloud depen-
dency. By leveraging on-device AI models including Nemotron Nano 4B for screen context
monitoring and grid-aware conversational assistance, a 6-qubit variational quantum circuit ac-
celerated with cuQuantum operating in tri-method ensemble with Rogers Ratio and Duval Tri-
angle diagnostics achieving 98.09% accuracy, Perplexity Sonar for web-grounded spatial fault
visualization at approximately 1,200 tokens/second, and GPT-4 as a responsible AI orchestra-
tor ensuring transparency and ethical deployment, the system achieves robust perception even
with limited connectivity.

The multi-agent AI architecture provides operators with comprehensive situational awareness
through real-time dashboard monitoring, natural language interaction via voice and text, 3D
spatial visualization of probable fault locations synthesized from local telemetry and external
incident databases, and continuous guidance from an AI orchestrator that explains model deci-
sions, detects biases, and ensures human oversight of high-stakes actions. Through real-world
performance benchmarks, we demonstrated how the dual-pipeline architecture achieves superior
detection accuracy (98% across fault types), reduced false positives (2.1 vs. 8-12 alarms/day),
and significant operator improvements (4.2× faster awareness, 31% faster completion).

GridVeda addresses the urgent need created by 46% of U.S. distribution infrastructure be-
ing at or beyond useful life, $150 billion in annual economic losses, and extreme weather
now responsible for over 80% of large-scale blackouts. The system can be extended beyond
transformer monitoring to distribution grid intelligence, renewable integration forecasting, and
multi-utility collaborative learning. Future work will explore federated learning approaches for
multi-utility collaboration via privacy-preserving training across multiple substations, integra-
tion with SCADA systems and IEC 61850 protocols for real-time data ingestion from substation
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sensors, expanded quantum algorithms with increased qubit counts and variational layer depth,
and advanced sensor integration including phasor measurement units and fiber optic sensing.

As climate volatility and electrification accelerate, intelligent augmentation of grid operations
becomes necessary. GridVeda provides a scalable blueprint for that transition, empowering oper-
ators with real-time, AI-driven decision support at the edge—detecting transformer degradation
early through physics-informed anomaly detection, classifying fault types via quantum ensem-
ble voting, estimating time-to-failure through temporal pattern analysis, and guiding mitigation
through agentic reasoning, all without requiring cloud dependency.
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